Bagging Classifiers for Fighting Poisoning Attacks in Adversarial Classification Tasks
نویسندگان
چکیده
Pattern recognition systems have been widely used in adversarial classification tasks like spam filtering and intrusion detection in computer networks. In these applications a malicious adversary may successfully mislead a classifier by “poisoning” its training data with carefully designed attacks. Bagging is a well-known ensemble construction method, where each classifier in the ensemble is trained on a different bootstrap replicate of the training set. Recent work has shown that bagging can reduce the influence of outliers in training data, especially if the most outlying observations are resampled with a lower probability. In this work we argue that poisoning attacks can be viewed as a particular category of outliers, and, thus, bagging ensembles may be effectively exploited against them. We experimentally assess the effectiveness of bagging on a real, widely used spam filter, and on a web-based intrusion detection system. Our preliminary results suggest that bagging ensembles can be a very promising defence strategy against poisoning attacks, and give us valuable insights for future research work.
منابع مشابه
Improving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran
An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...
متن کاملMultiple classifier systems for robust classifier design in adversarial environments
Pattern recognition systems are increasingly being used in adversarial environments like network intrusion detection, spam filtering and biometric authentication and verification systems, in which an adversary may adaptively manipulate data to make a classifier ineffective. Current theory and design methods of pattern recognition systems do not take into account the adversarial nature of such k...
متن کاملUsing boosting to prune bagging ensembles
Boosting is used to determine the order in which classifiers are aggregated in a bagging ensemble. Early stopping in the aggregation of the classifiers in the ordered bagging ensemble allows the identification of subensembles that require less memory for storage, have a faster classification speed and can perform better than the original bagging ensemble. Furthermore, ensemble pruning does not ...
متن کاملDetection of Adversarial Training Examples in Poisoning Attacks through Anomaly Detection
Machine learning has become an important component for many systems and applications including computer vision, spam filtering, malware and network intrusion detection, among others. Despite the capabilities of machine learning algorithms to extract valuable information from data and produce accurate predictions, it has been shown that these algorithms are vulnerable to attacks. Data poisoning ...
متن کاملMan vs. Machine: Practical Adversarial Detection of Malicious Crowdsourcing Workers
Recent work in security and systems has embraced the use of machine learning (ML) techniques for identifying misbehavior, e.g. email spam and fake (Sybil) users in social networks. However, ML models are typically derived from fixed datasets, and must be periodically retrained. In adversarial environments, attackers can adapt by modifying their behavior or even sabotaging ML models by polluting...
متن کامل